University of Massachusetts Amherst

Direct Lithium Extraction at the Salar de Atacama

Presenters : Xander Kirshen and David Boutt

sostenibilidad de la industria del litio: Monitoreo y desafíos ambientales ante el cambio climático

01 Direct Lithium Extraction vs. Evaporative

Technologies

Photo by Nicole Blin

Evaporative Technology

- 1. Brine and freshwater pumping
- 2. Solar evaporation in ponds
- Secondary processing with additional freshwater
- 4. Final lithium product

Direct Lithium Extraction (DLE)

- 1. Brine pumping and pre-processing (sometimes evaporation ponds)
- 2. DLE process with freshwater
- 3. Spent brine reinjection
- 4. Post-processing with additional freshwater
- 5. Final lithium product

Direct Lithium Extraction Methods

Brine Reinjection and Major Challenges

Major challenges of brine recycling (reinjection)

- Hydrogeology and understanding impacts of injection on hydrological behavior
- Brine geochemical reactions
- Seismicity and subsidence

Best practices

- Extensive exploration (drilling and geophysics)
- Geochemical sampling and modeling
- Develop numerical groundwater flow model with proposed well sites
- Comprehensive evaluation of well design

Reinjection Challenges at the Salar de Atacama

- 1. Severe lack of freshwater cannot increase freshwater use
- 2. Chemistry of brine reinjection
 - Will chemical reactions change permeability?
- 3. Hydrogeology
 - Lack of deep permeable aquifers
 - Uncertainty in nucleus stratigraphy important for hydrologic response
 - Dominated by evaporites more challenging than siliciclastic aquifers

Freshwater use per tonne lithium carbonate

- Evaporative technology uses
 23-50 m³ per tonne
 freshwater
- Current full-scale DLE uses
 71 m³ per tonne freshwater
- Other test-scale DLE processes use MORE and LESS freshwater

Vera et al., 2023

02 Water Availability and Freshwater Use

Photo by Nicole Blin

Available Water Approach

Precipitation

Recharge

Streamflow

Environmental Water Requirements Human Water Consumption

Playa and Lagoon Evapotranspiration

Availability Minus Demand Results

- Calculated basin-scale water availability in the context of freshwater allocations and sustainability
- Commonly used global hydrologic models greatly overpredict streamflow
- Understanding streamflow and groundwater will play large role in mining impacts

How does freshwater availability decrease with lithium mining?

- Calculated AMD when incorporating freshwater use associated with producing 10, 20, and 70 ktpa LCE
- Freshwater consumption from Li mining will preferentially impact drier, smaller basins
- Assuming the current fullscale DLE technology, DLE reduces water availability by 2x evaporative technologies

Key Takeaways

- 1. Hydrologic impact of DLE depends on specific DLE method (current full-scale DLE uses 2x more freshwater)
- 2. Challenges regarding DLE and brine reinjection at the Salar de Atacama must be addressed
- 3. Precipitation and water availability is overestimated in global hydrologic models in the Lithium Triangle
- 4. Accurate water budgets are critical to quantify impacts of lithium mining and direct lithium extraction